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OPINION ARTICLE

Are clonal plants more frequent in cold environments than elsewhere?

Jitka Klimešová∗ and Jiří Doležal

Section of Plant Ecology, Institute of Botany Academy of Sciences of the Czech Republic, Dukelská 135, CZ - 379 82 Třeboň, Czech
Republic

In stressful environments, clonality provides plants with reproductive insurance and conservation of limiting nutrients. Hence,
clonal growth is expected to be more frequent in floras of cold environments, such as the alpine and arctic regions, than in
temperate regions. Evidence for this is largely based on comparisons of the ratio of clonal to non-clonal vascular plant
species in local floras, as it is difficult to obtain reliable data that assess the extent of clonality in plant communities. Here
we review, to the best of our knowledge, the most comprehensive dataset on the proportion of clonal vascular plant species
in regional floras of cold environments/regions. Contrary to our expectations, the results do not show a higher proportion of
clonal species in cold environments than in the reference regions. The results rather show regional differences explicable by
different species pools and/or climates. More data, which take into account environmental gradients, habitat diversity and
different modes of clonal growth, the relative dominance (abundance) of clonal plants, are necessary to test the hypothesis
that the ratio of clonal to non-clonal vascular plants in cold environments/regions is higher than elsewhere.

Keywords: alpine floras; arctic floras; clonal growth forms; foraging for nutrients; reproductive insurance

Introduction

The ability to grow clonally enables a plant to produce
genetically identical and potentially physically independent
offspring by means of vegetative growth, to exploit a patchy
environment, to share limited resources and information
among integrated offsprings and to have multiple connec-
tions between above-ground and below-ground parts (for
definition of clonality used see Figure 1) (de Kroon and van
Groenendael 1997; Aarssen 2008).

The benefits of clonal growth have been demonstrated
to be especially important in stressful environments. The
preponderance of clonality in cold environments (alpine
and arctic areas) is often used as an example (Bliss 1971;
Billings 1974; Callaghan et al. 1992; Jónsdóttir et al.
1996; Körner 2003; Evette et al. 2009). The preponder-
ance of clonality in cold environments might be achieved by
increased clonality within a species (a larger proportion of
clonal to seed-derived descendants) in cold in comparison
with warm regions (intraspecific level) or by replacement
of non-clonal species by clonal species (interspecific level),
along a temperature gradient, from the warm to the cold
end. Although not unique to cold regions, the following
two explanations form the foundations of the reviewed
paradigm: clonal growth may be interpreted as a safe alter-
native to risky seed production and recruitment (Callaghan
and Emanualson 1985) and as an adaptation for nutri-
ent uptake from multiple sites occupied by a clone that
can translocate and store limited resources in a system of
interconnected ramets (Jónsdóttir et al. 1996).

On the intraspecific level, the fact that clones are more
frequent at the margins of geographical ranges of species
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(Silvertown 2008) – and latitudinal and altitudinal bound-
aries of plants distribution are a meeting point of such
margins – can be regarded as supportive evidence for the
idea that clonality contributes more to population dynam-
ics of plants in cold regions than elsewhere. Although data
on the role of clonality in population dynamics of plants can
be assessed by using molecular techniques (Arnaud-Haond
et al. 2007), it is impossible to separate apomixis (produc-
tion of seeds without meiosis) from clonal growth using
the genetic structure of populations. An apomictic seed is
genetically identical with its parent, but it faces the same
uncertainties in establishment as any other seed.

Here we focus on the interspecific level to evaluate if the
conventional wisdom about an advantage of clonal growth
results in higher representation of clonal species in compar-
ison with non-clonal plant species in regions of extremely
cold climates (i.e. where low temperature sets a limit to the
distribution of vascular plants). We evaluate if the accumu-
lated data support this idea and, finally, outline how any
future assessment should be carried out to test the hypoth-
esis of a preponderance of clonality in cold environments.
Although there is clonal growth in bryophytes as well, we
deal only with vascular plants in this review.

Review of literature

Despite the general opinion, we have found few supportive
data in the literature for any type of preponderance of
clonality in cold environments. In an analysis by Klimeš
et al. (1997), preferences of clonal versus non-clonal
plant species for lower versus higher temperatures were
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374 J. Klimešová and J. Doležal

Figure 1. Delimitation of clonality according to basic types of root–shoot connections in plants (adapted from Groff and Kaplan 1988).
Grey: shoots, black: roots. Non-clonal plant (A) consists only from primary shoot growing from the shoot pole of the embryo and primary
root growing from the root pole of the embryo. Clonal plants are plants in which the primary shoot is replaced either by axillary shoots
in rhizomatous and stoloniferous species (B, D), or by adventitious shoots (C, D) in root-sprouting plants. The production of adventitious
roots or shoots provides plants with the ability to have multiple connections between above-ground and below-ground parts (rooting units
sensu Aarssen 2008).

interpreted as a proof for higher proportion of clonal plants
in cold environments than in warm ones. However, the
analysis by Klimeš et al. (1997) was restricted to the
flora (using the CLO-PLA database for delimitation of
clonal plants) of Central Europe, where nearly all annuals
and trees are non-clonal plants. Consequently, the signif-
icant but small difference in distribution of clonal versus
non-clonal species according to their preference for tem-
perature assessed indirectly, by using Ellenberg indicator
values (10-degree scale, Ellenberg 1979) might have been
due to the fact that not only annuals but also trees pre-
fer warmer habitats, and trees by definition do not grow
above the alpine treeline. Jónsdóttir et al. (1996) compared
lists of growth forms reported from the county of Durham,
England, and the Torneträsk region, Sweden, and demon-
strated a preponderance of clonal species in the Swedish
subarctic site. Their growth forms were delimited accord-
ing to their above-ground morphology (e.g. multi-stemmed
perennials vs. single-stemmed perennials), but an analy-
sis of below-ground structures through which clonality is
usually achieved in herbs was not undertaken.

A contrary opinion on the proportion of clonal species
in cold environments was provided by Söyrinki (1938),
who concluded that the preponderance of clonal over sexual
multiplication in alpine regions was due to the dominance
(abundance) of clonal plants and not to the prevalence of
clonal species. Out of a total of 197 species, 52% had some
ability to produce vegetative offspring in the alpine zone

of the Scandinavian mountains, and these species usually
included community dominants.

A surprisingly low proportion of clonal plant species
(delimited by the ability to produce either adventitious roots
or shoots) in the flora of eastern Ladakh, Trans-Himalaya,
in comparison with the flora of the Czech Republic was
reported by Klimeš (2003). Only 30% of the plants occur-
ring at an altitude of about 4000 m a.s.l. in Ladakh were
clonal, and their proportion declined towards higher alti-
tudes. All species growing at the highest altitudes (ca.
6000 m a.s.l.) were non-clonal.

From the above it follows that the proportion of clonally
growing species in cold environments, or the proportion
of clonally growing species in comparison with non-clonal
species in a region, have been repeatedly studied; however,
due to different definitions of clonality, a cross-region com-
parison cannot be made. Are we able to find additional
data to enable the comparison of the proportion of clonally
growing species across different regions?

A comparison of data on the proportion of clonal
species in the floras of cold regions

Clonality is an architectural trait that characterises the
growth form of a plant. Although growth form classifica-
tion has a long tradition (e.g. Raunkiaer 1910; Barkman
1988; Halloy 1990), it does not allow a delimitation of
clonality, as its application is largely restricted to the
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above-ground architecture of plants (e.g. Komárková and
McKendrick 1988; Pokarzhevskaya 1995). Consequently,
the comparison of floras for clonality should use data from
studies that report directly on clonality and the vegetative
multiplication of plants. Unfortunately, even such studies
distinguish several categories of clonal growth, and there-
fore they are not readily comparable (Hess 1909; Söyrinki
1938; Hartmann 1957). Nevertheless, some of the distinc-
tions defined between clonal and non-clonal plants are
identical (see references in Table 1).

We compared the proportion of clonal species, using
the definition presented in Figure 1, in regional floras,
for different cold versus reference regions. Altogether,
we report data on clonal growth from two arctic and
four alpine regions (Table 1) and two adjacent reference
regions: the Czech Republic for mesic alpine and arctic
areas (Caucasus, Scandes, Alps, Svalbard and Taimyr), and
Kazakhstan for arid mountains such as Ladakh (Table 1,
Figure 2). The data were split according to moisture avail-
ability, as clonality is known to be more common in wet
habitats (Klimeš et al. 1997; Sosnová et al. 2010). The
collection of compared datasets represented all sources
available to date.

Our simple comparison provides no evidence that
clonality, in terms of the ratio of clonal to non-clonal
taxa, differs between arctic-alpine and reference regions
(Figure 3). On the other hand, there are indications that
areas with different species pools and/or climates (mesic
versus arid) differ in clonality. The proportion of clonal
plants in arctic and European mountains was found to be
60–90%, which is more than in the Czech Republic (65%).
However, in the arid Trans-Himalaya, non-clonal plant
species prevailed over clonal ones. Two datasets, those

for the Scandinavian mountains and for the Alps, include
the highest proportion of clonal species, about 90%.
Both include alpine grasslands and/or shrublands, where
the proportion of clonally growing plants is the highest,
similarly to grasslands in the low-altitude temperate zone
(Tamm et al. 2002), whereas other surveys contain open
vegetation of the nival zone (Caucasus) or the high arctic
(Svalbard, Taimyr) (Table 1).

Hartmann (1957) noticed the decreasing proportion of
clonal plants towards open communities in his study in the
Central Alps. He explained it by reduced competition in
pioneer communities that allows generative reproduction,
but in places, where plant cover becomes denser, clonal
propagation is more successful than generative regener-
ation, and non-clonal species become underrepresented.

Figure 3. Proportion of clonal (black) and non-clonal (grey)
plant species in floras from cold and reference regions. For char-
acteristics of datasets, see Table 1. Clonal plants were defined as
those without a persistent main root and with the ability to form
adventitious roots or shoots.

Figure 2. Localisation of the studied cold and reference regions (see Table 1 for details). 1, Czech Republic; 2, Caucasus; 3, Scandes; 4,
Alps; 5, Svalbard; 6, Taimyr; 7, Kazakhstan; 8, Ladakh.
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376 J. Klimešová and J. Doležal

Table 1. Data on clonality in arctic, alpine and reference regions compiled from cited literature. Arctic and alpine zones are defined as
areas between the potential climatic tree-line and the permanent snow line.

Region
(see Figure 2)

Type, latitude, altitude mean annual
temperature∗ Vegetation

Number of
species Reference

(1) Czech Republic reference region, 50◦ N,
250–1600 m a.s.l., −0.4 – +10 ◦C

Temperate forests and
anthropogenic habitats

2700 Klimešová and
Klimeš (2008)

(2) Caucasus alpine, 43◦ N, 3500–4000 m a.s.l.,
−6.1 ◦C

Subnival communities 89 Nakhutsrishvili and
Gamtsemlidze
(1984)

(3) Scandes alpine, 62◦ N, 900–1100 m a.s.l.,
0.65 ◦C

Alpine grasslands and shrubland 81 Rush et al. (2011)

(4) Alps alpine, 47◦ N, 2400–3000 m a.s.l.,
−3 – −8 ◦C

Alpine grasslands and subnival
communities

213 Hartmann (1957)

(5) Svalbard arctic, 78◦ N, 0–450 m a.s.l., −2 ◦C Tundra 78 J. Klimešová unpubl.
(6) Taimyr arctic, 73–77◦ N, 0–100 m a.s.l.,

−13 ◦C
Tundra 43 Polozova (1981)

(7) Kazakhstan reference region, 40–54◦ N,
100–500 m a.s.l., 0.5−12 ◦C

Steppes, semi-deserts and deserts 170 Baitulin (1979)

(8) Ladakh alpine, 33◦ N, 4100–5900 m a.s.l.,
−8.2 ◦C

Cold deserts and subnival
communities

540 Klimešová et al.
(2011a)

∗From www.worldclim.org

However, this idea was not supported by a case study from
the Alps on the demography of Poa alpina L. The estab-
lishment by vegetative regeneration (by means of plantlets
produced in inflorescences) of the species along a succes-
sional gradient in glacier foreland was restricted to the early
stages with open vegetation, while regeneration by seed
occurred along the whole gradient (Winkler et al. 2010).

Körner (2003), citing Hartmann (1957), also noted that
there was an abundance peak of clonal growth in the lower
alpine belt, followed by a reduction in frequency of clonal
species at higher elevations. An alternative point of view
can be that cold environments are not especially suited for
clonal plants, but they are more hostile for certain non-
clonal ones. With increasing altitude, first annuals and trees
are lost from the species pool, then clonal perennials and
finally non-clonal perennials.

Foundations of a paradigm reconsidered and future
directions

The foundations of the paradigm concerning the prepon-
derance of clonality appear general, and not restricted to
cold climate. Reproductive insurance applies to environ-
mental stress in general and, equally, the existence of a plant
foraging strategy for nutrients occurs in all environments
characterised by nutrient limitation.

The most pronounced example of reproductive insur-
ance by clonal growth occurs in aquatic habitats, where
plants may spread via clonal propagation as vegetative
growth could be very vigorous and plants can become
fragmented and transported via water current and easily re-
root (in the case of rooting species); however, flowering can
be very rare (Sculthorpe 1967). Cold environments differ
from the above. Although generative regeneration is scarce

at high altitudes or latitudes (Cooper et al. 2004; Alsos
et al. 2007; Steltzer et al. 2008), the vegetative growth of
plants and hence clonal growth is limited as well (Bell
and Bliss 1980; Alexandrova 1983). For example, Carex
curvula All., an alpine clonal sedge, spreads ca. 1 mm per
year laterally (Steinger et al. 1996). Rather, high-altitude
and high-latitude plants rely on longevity, while successful
establishment either from seeds or by clonal propagation is
a rare event (Bell and Bliss 1980; Marcante et al. 2009;
Douhovnikoff et al. 2010). Therefore not clonality, but
more generally perenniality could be viewed as providing
reproduction insurance in cold environments.

Foraging for nutrients over the area over which a clone
extends and perennial connection between ramets (integra-
tor) is favourable in all nutrient-poor habitats (Jónsdóttir
and Watson 1997), as shown by the study of the spatially
extensive clones of Carex bigelowii Torr. ex Schwein. in
the Swedish subarctic (Jónsdóttir and Callaghan 1988).
However, long internodes are rarely produced in the skele-
tal soils of cold environments, and once established the
long internodes can be damaged by frost heave, solifluction
and unstable substrate on screes (Hess 1909; Jonasson and
Callaghan 1992; Klimeš 2008). Consequently, one could
rather expect a lower number of rhizomatous and root-
sprouting plants in cold environments than elsewhere (see
Klimešová et al. 2011b) and therefore different spectra of
clonal growth organs in those areas in comparison with
reference regions.

Is there enough evidence to reconsider the paradigm
on the preponderance of clonally growing species in cold
regions? Although the foundations of the paradigm could
be questioned (see above), we certainly need better compar-
ative data from a variety of alpine and arctic environments
to offer an alternative.

D
ow

nl
oa

de
d 

by
 [

Sm
ith

so
ni

an
 I

ns
tit

ut
io

n 
L

ib
ra

ri
es

],
 [

Ji
tk

a 
K

lim
eš

ov
á]

 a
t 0

8:
11

 0
1 

A
pr

il 
20

13
 

www.worldclim.org


Are clonal plants more frequent in cold environments? 377

A consideration of the distribution of clonal plants in
different habitats and their plant communities, as opposed
to that in entire regional floras, would likely to yield a
refined ecologically meaningful understanding. For exam-
ple, shallow waters, which host the highest proportion of
clonal plants in temperate regions (Sosnová et al. 2010), are
either missing at high altitudes and latitudes or are devoid
of higher plants (Glooschenko et al. 1993; Klimešová et
al. 2011a). Land use history may also be a factor to con-
sider. For example, in hay meadows, no differences in the
proportion of clonal to non-clonal plants were found along
an altitudinal gradient spanning more than 1000 m in the
Swiss Alps (Wellstein and Kuss 2011).

To accept or reject the hypothesis that environmental fil-
ters operating in cold environments select more for plants
capable of clonal multiplication than in adjacent milder
environments, one should compare the clonal traits of the
species pool from which the flora of a cold region is derived
and the flora of cold region itself, ideally across different
plant communities. To interpret the comparison of rather
remote regions, e.g. the Czech Republic and Svalbard, as
was done in our simple analysis (Table 1), is problematic
since the flora of the Czech Republic is by no means a
direct source of species for the Svalbard flora and cannot
be a norm for the proportion of clonal species.

To conclude, we highlight that clonal growth is not par-
ticularly enhanced in comparison with generative reproduc-
tion in cold environments, and for reproductive insurance
perenniality is sufficient. Moreover, cold environments are
less suited for some types of clonal growth, such as below-
ground rhizomes and roots with adventitious shoots, due to
undeveloped substrate and its instability (cryoturbation and
mass movement). The proportion of clonal species in a flora
could also be affected by the fact that some specific habi-
tats are absent, rare or without plants in cold regions (e.g.
wetlands).
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